欢迎来到文驰范文网!

2023年稍复杂方程教案,菁选五篇

时间:2023-02-16 16:10:08 来源:文池范文网

稍复杂的方程教案1  题:稍复杂的方程(一)课型:新授课课时安排:1课时  教学目标:  1、能根据等式的基本性质解稍复杂的方程.初步学会列方程解决一些简单的实际问题。  2、培养抽象概括能力,发展下面是小编为大家整理的2023年稍复杂方程教案,菁选五篇,供大家参考。

2023年稍复杂方程教案,菁选五篇

稍复杂的方程教案1

  题:稍复杂的方程(一)课型:新授课课时安排:1课时

  教学目标:

  1、能根据等式的基本性质解稍复杂的方程.初步学会列方程解决一些简单的实际问题。

  2、培养抽象概括能力,发展思维的灵活性.培养根据具体情况,灵活选择算法的意识和能力。

  3、感受数学与现实生活的联系,培养数学应用意识与规范书写和自觉检验的习惯。

  4、在教学中渗透环保教育。

  教学重点:用方程解“已知比一个数的几倍多(少)几是多少,求这个数”的问题。

  教学难点:用方程解决问题的思路和数量关系。

  教学准备:教学课件。

  教学流程:

  一、复习铺垫:

  1、根据下面叙述说说相等关系,并写出方程。

  (1)公鸡x只,母鸡30只,是公鸡只数的2倍。

  (2)公鸡有x只,母鸡有30只,比公鸡只数的2倍少6只。

  2、足球知识引出准备题:

  准备题:一个足球上有12块黑色皮,白色皮比黑色皮的2倍少4块,共有多少块白色皮?

  理解题意后,引导学生画出线段图,并就学生找出数量关系,独立完成计算。

  二、探究新知:

  1、引入和出示例1:足球上黑色的皮都是五边形,白色的皮都是六边形的。白色皮共有20块,白色皮比黑色皮的2倍少4块,共有多少块黑色皮?

  让学生比较复习题与例1的相同点和不同点。

  2、引导学生把准备题的线段图改为例1的线段图,引导学生进一步理解题意和找出题目中数量关系。

  3、教师:哪个数量是未知的?怎样设未知数X呢?请同学们任意选择一个你喜欢的关系式尝试列方程解答。

  4、反馈学生的尝试完成情况,引导学生列方程完成例1(重点在于解方程方法的指导)。

  解:设共有x块黑色皮。

  黑色皮的块数×2-白色皮的块数=4

  2x一20=4

  2x一20+20=4+20

  2x=24

  2x÷2=24÷2

  x=12

  5、引导学生口头验算。

  6、引导学生总结列方程解决问题的步骤:

  ①弄清题意,找出未知数,用x表示。

  ②分析、找出数量之间的等量关系,列方程。

  ③解方程。

  ④检验,写出答案。

  三、练习巩固:

  1、完成课本66页练习十二第1题:解方程。

  3x+6=182x-7.5=8.5

  16+8x=404x-3×9=29

  2、找出数量关系,只列方程不计算。(课件出示)

  (1)图书室有文艺书180本,比科技书的2倍多20本,科技书x本。

  (2)养鸡厂养母鸡400只,比公鸡的2倍少40只,公鸡x只。

  (3)学校饲养小组今年养兔25只,比去年养的只数的3倍少8只,去年养兔x只。

  3、试一试,我能行:列方程解决问题。

  (1)共有1428个网球,每5个装一筒,装完后还剩3个。一共装了多少筒?

  (2)北京故宫的面积是72万*方米,比*广场面积的2倍少16万*方米。*广场的面积是多少万*方米?

  (3)猎豹是世界上跑得最快的动物,能达到每小时110km,比大象的2倍还多30km。大象最快能达到每小时多少km?

  (4)世界上最大的洲是亚洲,最小的洲是大洋州,亚洲的面积比大洋州面积的4倍还多812万*方千米。大洋州的面积是多少万*方千米?

  四、全课总结:

  教师:今天这节课你学到了什么知识?

  板书设计:

  稍复杂的方程

  解:设共有x块黑色皮。

  黑色皮的块数×2-白色皮的块数=4

  2x一20=4

  2x一20+20=4+20(把2x看作一个整体。)

  2x=24

  2x÷2=24÷2

  x=12

  答:共有12块黑色皮。

  稍复杂方程(二)

  课题:稍复杂方程(二)课型:新授课课时安排:1课时

  教学目标:

  1、知识与技能:结合具体的情景掌握根据两积之和的数量关系列方程,会把小括号内的式子看作一个整体求解的思路和方法。

  2、过程与方法:通过学习两积之和的数量关系,来理解两积之差、两商之和、两商之差的数量关系,培养举一反三的能力。

  3、情感、态度与价值观:让学生经历算法多样化的过程,利用迁移类推的方法在解决问题的过程中体会数学和现实生活的密切联系。在教学中渗透环保教育。

  教学重点:正确地寻找数量之间的相等关系,并能根据数量关系列方程解题。

  教学难点:正确地寻找数量之间的相等关系列出方程,并会解稍复杂的方程。

  教学准备:教学课件。

  教学流程:

  一、复习铺垫:

  1、根据问题说出求问题的数量关系。

  (1)足球和篮球一共有多少个?

  (2)每枝钢笔比每枝铅笔贵多少少?

  (3)王师傅每小时比*每小时少加工零件多少个?

稍复杂的方程教案2

  教学目标

  1。通过学习初步掌握列方程解决问题的方法及步骤,会解稍复杂的方程。 2。体验到用列方程解决问题的优越性,能够根据题目特点选择合适的方法解决问题。 3。用情境教学,把解决问题融入一种故事情境,通过本节课的学习,激发学生学习兴趣,增强应用价值的意识,受到人文教育。

  教学重难点

  掌握列方程解决问题的方法及步骤,会解稍复杂的方程。体验到用列方程解决问题的优越性,能够根据题目特点选择合适的方法解决问题。

  教学过程

  准备题:(课件出示)

  1。用含有字母的式子表示下列数量

  (1)比ⅹ的3倍多5

  (2)比ⅹ的4倍少2

  (3)2个ⅹ与34的和

  (4)ⅹ的5倍与9的差

  说说你解方程的思路?

  2、解下列方程。

  3x=147 y—34=71

  3、根据下面叙述说说相等关系,并写出方程。

  小鹏有x岁,老师有35岁,比小鹏岁数的3倍少1岁。

  一、情境激趣,导入新课

  出示足球

  1、实物引趣:问:喜欢踢足球的请举手(评价),对这个足球的构成有所了解的请举手(交流评价)。小小足球的完美构成引起了数学家、建筑学家、美学家极大的兴趣,都从中发现了自己研究的价值。今天我们就以一位数学家的眼光来发现这个足球在构成中隐藏着的数学秘密,好不好?请同学们观察主题图,寻找你所需要的信息。解决问题

  足球上黑色的皮都是五边形,白色的皮都是六边形的,

  黑色皮共有12块,白色皮比黑色皮的2倍少4块。共有多少块白色皮?怎样列算术式计算?

  12×2—4

  =24—4

  =20(块)

  答:共有20块白色皮。

  2、合作探究

  (1)请同学们观察主题图,寻找你所需要的信息。

  例1:足球上白色皮共有20块,比黑色皮的2倍少4块,共有多少块黑色皮?

  (2)汇报交流:你知道了那些信息?足球上黑色的皮都是五边形,白色的皮都是六边形的。白色皮共有20块,白色皮比黑色皮的2倍少4块,共有多少块黑色皮?”

  审题,寻找解决问题的有用信息。

  揭示课题:今天我们学习用方程解答这类问题。

  教师板书:稍复杂的方程

  分析、找出数量之间的相等关系。白色皮和黑色皮有什么关系?

  学生小组讨论,

  汇报结果。

  可能出现的等量关系是:

  黑色皮的块数2—4=白色皮的块数

  黑色皮的块数2—白色皮的块数=4

  黑色皮的块数2=白色皮的块数+4

  (3)同桌讨论怎样把x表示什么写清楚。

  (4)怎样列出方程。

  (5)交流汇报并让学生根据题意说出所列方程所表示的等量关系。允许学生列出不同的方程。

  师板书学生的方程并选择2x—4=20讨论它的解法

  课件演示:2ⅹ—20=4的解法。

  学生小组讨论解法汇报交流师板书:

  变式练习:

  足球上黑色的`皮都是五边形的,白色的皮都是六边形。白色皮共有20块,比黑色皮的2倍

  多4块。共有多少块黑色皮?

  (6)引导学生总结

  列方程解决问题的步骤:

  ①弄清题意,找出未知数,用x表示。

  ②分析、找出数量之间的相等关系,列方程。

  ③解方程。

  ④检验,写出答案。

  二、学以致用,拓展练习

  同学们,运用刚才学到的本领,我们到数学王国里闯一闯,有信心吗?

  1、姐姐今年20岁,刚好比弟弟年龄的2倍还多4岁,弟弟今年多少岁?

  2、只列方程不解答。

  要求独立完成,同桌检查,交流展示。

  3、解下列方程,独立完成后,全班讲评。

  4、北京故宫的面积是72万*方米,比*广场面积的2倍少16万*方米。*广场的面积是都是*方米?

  独立完成,集体讲评。

  5、共有1428个网球,每5个装一筒,装完后还剩3个。一共装了多少筒?独立完成,集体讲评。说说理由。

  三、小结

  通过这节课的学习,你有哪些收获和遗憾?

  师:我们要用数学的眼睛看生活中的事物,要留心生活中的数学问题,善思善学,学好数学。

  板书:

  稍复杂的方程

  黑色皮的块数2—4=白色皮的块数2x—4=20

  黑色皮的块数2—白色皮的块数=4 2x—20=4

  黑色皮的块数2=白色皮的块数+4 2x=20+4

稍复杂的方程教案3

  教学目标

  1。通过学习初步掌握列方程解决问题的方法及步骤,会解稍复杂的方程。 2。体验到用列方程解决问题的优越性,能够根据题目特点选择合适的方法解决问题。 3。用情境教学,把解决问题融入一种故事情境,通过本节课的学习,激发学生学习兴趣,增强应用价值的意识,受到人文教育

  教学重难点

  掌握列方程解决问题的方法及步骤,会解稍复杂的方程。体验到用列方程解决问题的优越性,能够根据题目特点选择合适的方法解决问题。

  教学过程

  准备题:(课件出示)

  1。用含有字母的式子表示下列数量

  (1)比ⅹ的3倍多5

  (2)比ⅹ的4倍少2

  (3)2个ⅹ与34的和

  (4)ⅹ的5倍与9的差

  说说你解方程的思路?

  2、解下列方程。

  3x=147 y—34=71

  3、根据下面叙述说说相等关系,并写出方程。

  小鹏有x岁,老师有35岁,比小鹏岁数的3倍少1岁。

  一、情境激趣,导入新课

  出示足球

  1、实物引趣:问:喜欢踢足球的请举手(评价),对这个足球的构成有所了解的请举手(交流评价)。小小足球的完美构成引起了数学家、建筑学家、美学家极大的兴趣,都从中发现了自己研究的价值。今天我们就以一位数学家的眼光来发现这个足球在构成中隐藏着的数学秘密,好不好?请同学们观察主题图,寻找你所需要的信息。解决问题

  足球上黑色的皮都是五边形,白色的皮都是六边形的,

  黑色皮共有12块,白色皮比黑色皮的2倍少4块。共有多少块白色皮?怎样列算术式计算?

  12×2—4

  =24—4

  =20(块)

  答:共有20块白色皮。

  2、合作探究

  (1)请同学们观察主题图,寻找你所需要的信息。

  例1:足球上白色皮共有20块,比黑色皮的2倍少4块,共有多少块黑色皮?

  (2)汇报交流:你知道了那些信息?足球上黑色的皮都是五边形,白色的皮都是六边形的。白色皮共有20块,白色皮比黑色皮的2倍少4块,共有多少块黑色皮?”

  审题,寻找解决问题的有用信息。

  揭示课题:今天我们学习用方程解答这类问题。

  教师板书:稍复杂的方程

  分析、找出数量之间的相等关系。白色皮和黑色皮有什么关系?

  学生小组讨论,

  汇报结果。

  可能出现的等量关系是:

  黑色皮的块数2—4=白色皮的块数

  黑色皮的块数2—白色皮的块数=4

  黑色皮的块数2=白色皮的"块数+4

  (3)同桌讨论怎样把x表示什么写清楚。

  (4)怎样列出方程。

  (5)交流汇报并让学生根据题意说出所列方程所表示的等量关系。允许学生列出不同的方程。

  师板书学生的方程并选择2x—4=20讨论它的解法

  课件演示:2ⅹ—20=4的解法。

  学生小组讨论解法汇报交流师板书:

  变式练习:

  足球上黑色的皮都是五边形的,白色的皮都是六边形。白色皮共有20块,比黑色皮的2倍

  多4块。共有多少块黑色皮?

  (6)引导学生总结

  列方程解决问题的步骤:

  ①弄清题意,找出未知数,用x表示。

  ②分析、找出数量之间的相等关系,列方程。

  ③解方程。

  ④检验,写出答案。

  二、学以致用,拓展练习

  同学们,运用刚才学到的本领,我们到数学王国里闯一闯,有信心吗?

  1、姐姐今年20岁,刚好比弟弟年龄的2倍还多4岁,弟弟今年多少岁?

  2、只列方程不解答。

  要求独立完成,同桌检查,交流展示。

  3、解下列方程,独立完成后,全班讲评。

  4、北京故宫的面积是72万*方米,比*广场面积的2倍少16万*方米。*广场的面积是都是*方米?

  独立完成,集体讲评。

  5、共有1428个网球,每5个装一筒,装完后还剩3个。一共装了多少筒?独立完成,集体讲评。说说理由。

  三、小结

  通过这节课的学习,你有哪些收获和遗憾?

  师:我们要用数学的眼睛看生活中的事物,要留心生活中的数学问题,善思善学,学好数学。

  板书:

  稍复杂的方程

  黑色皮的块数2—4=白色皮的块数2x—4=20

  黑色皮的块数2—白色皮的块数=4 2x—20=4

  黑色皮的块数2=白色皮的块数+4 2x=20+4

稍复杂的方程教案4

  教学目标

  1。通过学习初步掌握列方程解决问题的方法及步骤,会解稍复杂的方程。 2。体验到用列方程解决问题的优越性,能够根据题目特点选择合适的方法解决问题。 3。用情境教学,把解决问题融入一种故事情境,通过本节课的学习,激发学生学习兴趣,增强应用价值的意识,受到人文教育。

  教学重难点

  掌握列方程解决问题的方法及步骤,会解稍复杂的方程。体验到用列方程解决问题的优越性,能够根据题目特点选择合适的方法解决问题。

  教学过程

  准备题:(课件出示)

  1。用含有字母的式子表示下列数量

  (1)比ⅹ的3倍多5

  (2)比ⅹ的4倍少2

  (3)2个ⅹ与34的和

  (4)ⅹ的5倍与9的差

  说说你解方程的思路?

  2、解下列方程。

  3x=147 y—34=71

  3、根据下面叙述说说相等关系,并写出方程。

  小鹏有x岁,老师有35岁,比小鹏岁数的3倍少1岁。

  一、情境激趣,导入新课

  出示足球

  1、实物引趣:问:喜欢踢足球的请举手(评价),对这个足球的构成有所了解的请举手(交流评价)。小小足球的完美构成引起了数学家、建筑学家、美学家极大的兴趣,都从中发现了自己研究的价值。今天我们就以一位数学家的眼光来发现这个足球在构成中隐藏着的数学秘密,好不好?请同学们观察主题图,寻找你所需要的信息。解决问题

  足球上黑色的皮都是五边形,白色的皮都是六边形的,

  黑色皮共有12块,白色皮比黑色皮的2倍少4块。共有多少块白色皮?怎样列算术式计算?

  12×2—4

  =24—4

  =20(块)

  答:共有20块白色皮。

  2、合作探究

  (1)请同学们观察主题图,寻找你所需要的信息。

  例1:足球上白色皮共有20块,比黑色皮的2倍少4块,共有多少块黑色皮?

  (2)汇报交流:你知道了那些信息?足球上黑色的皮都是五边形,白色的皮都是六边形的。白色皮共有20块,白色皮比黑色皮的2倍少4块,共有多少块黑色皮?”

  审题,寻找解决问题的有用信息。

  揭示课题:今天我们学习用方程解答这类问题。

  教师板书:稍复杂的方程

  分析、找出数量之间的相等关系。白色皮和黑色皮有什么关系?

  学生小组讨论,

  汇报结果。

  可能出现的等量关系是:

  黑色皮的块数2—4=白色皮的块数

  黑色皮的块数2—白色皮的块数=4

  黑色皮的块数2=白色皮的块数+4

  (3)同桌讨论怎样把x表示什么写清楚。

  (4)怎样列出方程。

  (5)交流汇报并让学生根据题意说出所列方程所表示的等量关系。允许学生列出不同的方程。

  师板书学生的方程并选择2x—4=20讨论它的解法

  课件演示:2ⅹ—20=4的解法。

  学生小组讨论解法汇报交流师板书:

  变式练习:

  足球上黑色的`皮都是五边形的,白色的皮都是六边形。白色皮共有20块,比黑色皮的2倍

  多4块。共有多少块黑色皮?

  (6)引导学生总结

  列方程解决问题的步骤:

  ①弄清题意,找出未知数,用x表示。

  ②分析、找出数量之间的相等关系,列方程。

  ③解方程。

  ④检验,写出答案。

  二、学以致用,拓展练习

  同学们,运用刚才学到的本领,我们到数学王国里闯一闯,有信心吗?

  1、姐姐今年20岁,刚好比弟弟年龄的2倍还多4岁,弟弟今年多少岁?

  2、只列方程不解答。

  要求独立完成,同桌检查,交流展示。

  3、解下列方程,独立完成后,全班讲评。

  4、北京故宫的面积是72万*方米,比*广场面积的2倍少16万*方米。*广场的面积是都是*方米?

  独立完成,集体讲评。

  5、共有1428个网球,每5个装一筒,装完后还剩3个。一共装了多少筒?独立完成,集体讲评。说说理由。

  三、小结

  通过这节课的学习,你有哪些收获和遗憾?

  师:我们要用数学的眼睛看生活中的事物,要留心生活中的数学问题,善思善学,学好数学。

  板书:

  稍复杂的方程

  黑色皮的块数2—4=白色皮的块数2x—4=20

  黑色皮的块数2—白色皮的块数=4 2x—20=4

  黑色皮的块数2=白色皮的块数+4 2x=20+4

稍复杂的方程教案5

  教学目标:

  1、结合具体事例,经历自主尝试列方程解决稍复杂的相遇问题的过程。

  2、能根据相遇问题中的等量关系列方程并解答,感受解题方法的多样化。

  3、体验用方程解决问题的优越性,获得自主解决问题的积极情感,增强学好数学的信心。

  教学重点:正确地寻找数量之间的相等关系。

  教学难点:掌握列方程解具有两积之和(或差)的数量关系的应用题的解法。

  教学过程:

  一、激发

  1.在相遇问题中有哪些等量关系?

  板书:甲速×相遇时间+乙速×相遇时间=路程

  (甲速+乙速)×相遇时间=路程

  2.出示复习题:甲乙两列火车分别同时从北京和上海开出,相向而行。甲车每小时行122千米,乙车每小时行87千米,经过7小时相遇。北京到上海的路程是多少千米?

  生做完后,指名说一说自己是怎样解答的,师画出线段图,并板书出两种解法。

  甲车 相遇 乙车

  每小时122千米 每小时87千米

  北京 上海

  第一种解法:用两车的速度和×相遇时间:(122+87)×7

  第二种解法:把两车相遇时各自走的路程加起来:122×7+87×7

  3.揭示课题:如果我们把复习准备中的第2题改成“已知两地之间的路程、相遇时间及其中一辆车的速度,求另一辆车的速度”,要求用方程解,又该怎样解答呢?这节课我们就来学习列方程解相遇问题的应用题。 (板书课题)

  二、尝试

  1.出示例题:北京到上海的路程是1463千米,甲乙两列火车分别同时从北京和上海开出,相向而行。乙车每小时行87千米,经过7小时相遇。甲车每小时行多少千米?

  2.指名读题,找出已知所求,引导学生根据复习题的线段图画出线段图。

  3.根据线段图学生找出数量间的相等关系:

  甲车7小时行的路程+乙车7小时行的路程=1463千米

  4.设未知数列方程并解答。

  解:设甲车*均每小时行x千米。

  87×7+7x=1463

  609+7x=1463

  7x=1463-609

  7x= 856

  x=856÷7

  x=122

  答:甲车*均每小时行40千米。

  4.启发学生用不同方法列方程,并说说方程所表示的数量关系。表示相遇时,两车的速度和与时间的积等于两地间铁路的长度。

  三、应用

  试一试,试着让学生列出两种方程,如:

  32x+32×7=480,

  480-32x=32×7

  四、体验

  相遇问题中求速度的应用题,列方程解比较简便。列方程解求速度、时间等问题时,首先要根据以前学习的相遇问题中数量间的相等关系,设未知数列方程,再正确地解答。

  五、作业

  练一练

  教学后记:

  这节课的最大特点是演示取代了教师的讲解和灌输,激发了学生浓厚的学习兴趣和求知欲望,学生学得比较轻松、愉快。不仅掌握了应用题的两种解答方法,而且明白了知识的形成过程,也培养学生自主探究、合作交流的意识和提出问题、分析问题、解决问题的能力。通过这节课,我体会到学生学习需要经历亲身的体验,才能获得切实的感受,感受越深,理解数学知识。

【2023年稍复杂方程教案,菁选五篇】相关文章:

1.中班防溺水安全主题教案(2篇)

2.庖丁解牛教案两课时(4篇)

3.最新沁园春·长沙教案一等奖(汇总14篇)

4.中学语文教学设计郑桂华(10篇)(完整)

5.最新捉鱼教案反思(实用12篇)(范例推荐)